
A Prioritized Experience Replay Based DDPG Approach to the
Strategy Generation for UCAVs

Junsen Lu, Yun-Bo Zhao∗, Yu Kang, Yuhui Wang and Yimin Deng

Abstract— Unmanned combat aerial vehicles are becoming
essential participants in future air-combat scenarios, while the
optimal control strategy remains a great challenge due to
the high dynamics of the aerial vehicles themselves as well
as the environmental uncertainties in air-combat. Based on a
deep deterministic policy gradient algorithm framework, an air
combat decision-making strategy is designed and implemented,
and further a prioritized experience replay method is proposed
for the proposed algorithm to further improve the efficiency
in the training process. Simulation experiments show that, at
much reduced training cost, the proposed approach achieves
superior air combat performance with fast convergence.

I. INTRODUCTION

Unmanned Combat Air Vehicles (UCAVs) have been de-
veloping fast in recent years and have shown their important
role in several real-world air combats [1], serving as au-
tonomous or semi-autonomous aerial offensive or defensive
weapons, due to their advanced capabilities of detecting,
tracking, etc. [2] Considering the extremely high dynamics
of UCAVs themselves and the strong uncertainties in air
combats, one key requirement for the development of UCAVs
is the real-time effective strategies generation [3]. We have
seen many pioneering approaches to this challenge, using
the rule-based approach [4], the probabilistic model/fuzzy
logic model [5], [6], the computational intelligence hybrid
approach [7], [8], etc. But without any doubt further im-
provements are urgently needed.

We notice that in recent years the Reinforcement Learning
(RL) based approach has been attracting more and more
attentions in UCAVs strategy generation, since such an
approach can greatly improve the robustness of UCAVs
strategy generation [9], [10]. Many results focus on air
combat maneuver decisions, but most of them are based on
establishing tactical action sets and basic action sets, and
discretizing the action space to achieve maneuver decision
[11]. Although this kind of approach can quickly output
the decision sequence, it is inconsistent with the actual air
combat situation. The high discretization of the action space
will lead to “dimension disaster”. On the contrary, the low
discretization will reduce the control accuracy.

This work was supported by the National Key Research and Development
Program of China (No. 2018AAA0100801).

Junsen Lu, Yun-Bo Zhao and Yu Kang are with Department of Automa-
tion, University of Science and Technology of China, Hefei 230026, China.

Yuhui Wang is with Department of Automation, Nanjing University of
Aeronautics and Astronautics, Nanjing, 211106, China.

Yimin Deng is with School of Automation Science and Electrical
Engineering,Beihang University, Beijing, 100191, China.
∗ Corresponding author. ybzhao@ustc.edu.cn

To solve the mentioned problem, Lowe et al proposed
the Deep Deterministic Policy Gradient (DDPG) algorithm
[12]–[14]. In order to deal with the problem of continuous
space, the DDPG algorithm learns a centralized Q function
for each agent with the idea of centralized training, decen-
tralized execution [15]. In this way, the DDPG algorithm can
alleviate non-stationary problems and stabilize training based
on global information. Several research studies have applied
DDPG to the 1V1 UCAV air combat and have achieved good
results.

To further reduce the training time and improve the
stability of the training process, we here propose an improved
DDPG algorithm using prioritized experience replay (PER)
method [16], [17]. Based on the assumption that the RL
agent can learn more knowledge from some transitions than
other experiences, PER takes TD-error as the criterion to
measure the value of each experience and “replay” higher
value experiences more frequently. In this work, we propose
an improved DDPG algorithm with prioritized experience
replay to the air combat decision-making process, whose
effectiveness is then verified by numerical examples.

The rest of the paper is organized as follows. In Section
II, the air-combat game model is introduced with necessary
definitions of the key concepts. In Section III, the DDPG
algorithm with prioritized experience replay is discussed to
generate air combat strategy. In section IV, several simulation
experiments are considered to illustrate the effectiveness of
the proposed method, and Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, the 1v1 air combat game environment is
introduced. The two players, referred to as red and blue, are
assumed to maneuver in the same horizontal plane. The target
of each player is to reach the tail of the adversary and track
stably to satisfy the launching condition of the missiles. We
first describe the system state, actions and the dynamics of
UACV in the game. The goal reward function is then given
according to Algorithm 1.

A. States

A 3-D environment is set up and the 1v1 air combat game
is studied in the 3-D environment. As shown in Fig.1, the
states of both UCAVs are defined by the following variables:

s = [qr,qb,d,β ,∆h] (1)

where the subscript r and b denote the parameters of our-
side and the opponent, respectively, the line connecting two
UAVs is the line of sight (LOS), d is the distance of LOS, qb



is the antenna train angle (ATA) of blue, which is the angle
between velocity vector of blue UCAV vb and LOS, qr is the
aspect angle (AA) of blue, which is the angle between LOS
and velocity vector of red UCAV vr, β is the angle between
the heading directions of two UCAVs, and ∆h is the height
difference between two UCAVs.
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Fig. 1. The definition of states variables

The situation of both UCAVs are described by their
position and velocity, and the variables can be calculated
as follows,

qr = arccos[(xb− xr)cosψr cosτr +(yb− yr)sinψr

cosτr +(zb− zr)sinτr]/d
qb = arccos[(xr− xb)cosψr cosτr +(yr− yb)sinψr

cosτr +(zr− zb)sinτr]/d
d =

√
(xr− xb)2 +(yr− yb)2 +(zr− zb)2

β = arccos(cosψr cosτr cosψb cosτb+

cosτr sinτr cosτb sinτb + sinτr sinτb)

(2)

where (xr,yr,zr),(xb,yb,zb) are the coordinates of two
UCAVs, respectively. ψr,ψb represent the heading angle of
two UCAVs respectively. τr, τb represents the heading angle
of the two UCAVs, respectively. The position variables of
the aircraft have no limits.

B. Dynamics

The dynamics of air craft can be simplified to a three-
degree-of-freedom dynamic motion model. The UCAV dy-
namic model can be expressed as follows,

dv
dt = g(nx− sinτ)
dτ

dt = g
v (nzcosγx− cosτ)

dψ

dt = g
vcosτ

(nzsinγx)

(3)

where nx is the tangential overload, which represents the
tangential acceleration, nz is the vertical overload, which
represents the normal acceleration, γx is the roll angle, which
represents rotation angle rotate along x axis. The motion
model of UCAV can be expressed as follows,

dx
dt = vcosτcosψ

dy
dt = vcosτsinψ

dz
dt = vsinτ

(4)

C. Action

This paper uses continuous action space to control the
aircrafts. Each UACV updates its state according to the
dynamics and motion equations respectively after taking the
actions. The acceleration of UCAV in each direction is nx,
nz and γx, and these variables will lead to the changes of
state information. Therefore, the control vector u of UCAV
is defined as

u = [nx,nz,γx] (5)

The different value of these three variables will lead the
aircrafts to different actions,and each of them have upper
bounds and lower limits respectively. The ranges of values
are defined as: nx ∈ [−5,5], nz ∈ [−2,2] ,γx ∈ [−π

2 ,
π

2 ].

D. Rewards

In a real air combat, the goal of the player is to reach
and maintain an advantageous position behind the opponent,
which is seen as a sufficient condition to launch a missile,
and to obtain the highest reward. Therefore, we define a
reward function for every state of the system to quantify
the goal. The rules are made as follows: if the player’s plane
flies into the goal zone of the enemy, it will receive a positive
reward. On the contrary, it will receive a negative reward if
the opponent makes it to the goal zone. In summary, there
could be three possible results in a time-limited episode: win,
lose and out of the area. This paper considers 1vs1 air combat
and the rewards of both aircrafts should be opposite. The
rewards of each situation are expressed as in Algorithm 1,

Algorithm 1 Reward Function R(s)
Require: state s
Ensure: reward R

1: Caculate qr,qb,d,β ,∆h
2: if d < dmin then
3: R=-10
4: else if dmin < d < dmax then
5: if qr < 30 and qb > 30 then
6: R=10
7: else if qr > 30 and qb < 30 then
8: R=-10
9: else

10: R=0
11: end if
12: else
13: R=0
14: end if

III. DDPG WITH PRIORITIZED EXPERIENCE REPLAY

In this section, the method of DDPG and the idea of pri-
oritized experience replay are introduced and the integrated
algorithm of DDPG with prioritized experience replay is then
discussed.



A. Deep Reinforcement Learning

In a standard reinforcement learning algorithm, the goal of
the agent is to interact with the environment and maximize
the long-term rewards. The process of this interaction is
usually formulated as a Markov Decision Process (MDP).
MDP can be described by a four-element tuple (S,A,R,P),
where S is the state space, A is the action space, R : S×A→R,
is the reward function and P : S× A× A → [0,1] is the
transition probability. The long-term reward is defined as
R0 = ∑

T
i=0 γir(si,ai) where r(si,ai) is the reward of executing

action ai at state ai, T represents the termination time step
and γ is the discount factor. The target of the agent is
to learn a policy π : S→ A to maximizes R0. The action-
value function is defined to represent the expected long-term
reward of executing action at at state st ,

Q(st ,at) = E[Rγ

t |s = st ,a = at ] = E[
T

∑
i=t

γ
i−tr(si,ai)] (6)

The optimal action-value function is often obtained by
Bellman Equation,

Q∗(st ,at) = E[r(st ,at)+ γ max
at+1

Q∗(st+1,at+1)] (7)

However, the approach mentioned above can only deal
with the situation where both the state space and the action
space are discrete. In order to adopt the above algorithm in
continuous space, deep neural networks are designed and
implemented. DQN is then proposed combining the con-
ventional reinforcement learning algorithms (e.g. Q-learning)
with deep neural networks. DQN uses two networks, the
action-value network Q(st ,at ,ω) is used to approximate the
action-value function Q(st ,at) and the actor network µ(st ,v)
is used to approximate the actor function µ(st) ,where ω and
v are the parameters of the network.

B. Deep Deterministic Policy Gradient

Based on the framework of the AC algorithm, the DDPG
algorithm consists of an actor part and a critic part, and the
two parts are treated by DQN accordingly. Besides, DDPG
adopts a pair of neural networks with the same structure
named evaluation neural network and target neural network
for each part. The output of an actor part is a deterministic
action whose network is defined as a = µ(s,v). Previous
policy gradients used a random strategy, each acquisition
action required sampling the distribution of the current
optimal strategy, while DDPG used a deterministic strategy,
determined directly by a function µ . In addition, Actor
has a target network with the same structure but different
parameters to update the value network, i.e. critic part. The
outputs of both networks are action. The purpose of the
critic part is to fit a value function Q(s,a,ω). There is also
an estimated network and a target network. Both networks
output the Q-value of the current state but have different
inputs. The input of the critic target network has two parts,
the observation value of the current state and the action
output from the actor target network. The input of the critic
estimated network is action output from the actor target

network. For the training process of the neural network of
the actor, the loss function is expressed by the average value
of the state and action and the goal is to maximize the loss
function:

Loss =−mean(v(s,a;θcritic) (8)

For the critic, TD-error is used to update the parameters
of the evaluation neural network and the goal of training
process is to minimized the loss function,

T D− error = r(st ,at)+ γQ
′
(st+1,at+1,ω)−Q(st ,at ,ω)

Loss = (T D− error)2

(9)
The structure of the DDPG algorithm is shown in Fig. 2.

Fig. 2. The structure of DDPG algorithm

C. Prioritized Experience Replay

The core of priority experience playback is to design
a criterion to measure the importance of each experience
and to more frequently replay experiences with either very
successful attempts or very bad attempts. A reasonable
approximation of the criterion is the TD-error of transition
since it describes how this experience is unexpected for
critical networks. TD-error is the difference between the
actual Q value and the estimated Q value, and is often used
to update the estimation of the action-value function Q(s,a).
It reflects what extent an agent can learn from the experience.
The bigger the absolute TD-error is, the more positive the
correction for the expected action value is. The agent can
avoid making wrong actions and improve the performance
by replaying these experiences more frequently.

The probability of the sampled experience j entering the
memory replay buffer is defined as

P( j) =
Dα

j

∑k Dα
k

(10)

where D j =
1

rank( j) > 0, rank( j) is the rank of the experience
j with absolute TD-error being the criterion. The parameter
α is the adjustment factor. The experiences with a larger
rank have a higher probability to enter the replay buffer. The
use of prioritized experience replay prevents the over-fitting
of the neural networks and leads to a better performance of
the algorithm.

However, since we tend to replay the experience with high
TD errors more frequently, it will undoubtedly change the



sample distribution and state access frequency. This change
may cause the training process of neural network to oscillate
or even diverge. To deal with this problem, the importance
sampling weight is used when calculating the weight change:

Wj =
1

Sβ ·P( j)β
(11)

where S is the size of the replay buffer, P( j) is the probability
of the sampled experience j, the parameter β controls to what
extent you want to offset the effect of prioritized experience
replay on the convergence results. If β = 1, it means the
influence is completely cancelled out.

The integrated DDPG algorithm with prioritized experi-
ence replay is shown in Algorithm 2.

Algorithm 2 DDPG training process with Prioritized Expe-
rience Replay

1: Initialize action-value network Q(st ,at ,ω), actor net-
work µ(st ,v) with ω and v separately, replay buffer R
with size S

2: Initialize target network Q′(st ,at ,ω), µ(st ,v) with ω and
v separately

3: Initialize maximum priority, parameters α,β updating
rate of the target network λ , minibatch K

4: for episode = 1 to M do
5: Initialize a random noise process N
6: Observe initial state information s0
7: for t = 1 to max-episode-length do
8: Add noise N in the exploration policy and select

action ai according to the new policy
9: Execute actions ai = (a1,a2) and observe reward R

and new state information; st+1
10: Store experience (st ,at ,rt ,st+1) in replay buffer R
11: set s← st+1
12: for agent i = 1,2 do
13: Sample experience j with probability P( j)
14: Compute corresponding importance-sampling

weight W ( j) and TD-error δ ( j)
15: Update the priority of transition j according to

absolute TD-error |δ j|
16: end for
17: Update critic network by minimizing the loss func-

tion L = 1
K ∑i ωiδ

2
i

18: Update actor network using the policy gradient
∇vµ|si =

1
K ∑i ∇aQ(st ,at ,ω)|s=si,a=µ(si,v)∇vµ(st ,v)|si

19: Adjust the parameters of the target network
Q′(st ,at ,ω) and µ ′(st ,v)with an updating rate λ

20: end for
21: end for

IV. SIMULATION AND ANALYSIS

In this section, experimental settings are first introduced
and then the proposed algorithm is tested in simulations.
Also, a comparison with the conventional DDPG algorithm
is given.

TABLE I
THE INITIAL STATES OF THE PARAMETERS OF THE UCAVS

Parameter Blue UCAV Red UCAV
x 0 [-2000,2000] randomly
y 0 [-2000,2000] randomly
z 0 [-2000,2000] randomly
v 200 [100,300] randomly
ψ 0 0
τ 0 0

A. parameters setting

The proposed DDPG with PER algorithm is built by
Tensorflow module. The details of the simulation are given
below. Both actor and critic networks use a fully connected
network with 64 units in hidden layer and the activation
function is tanh function. The learning rate is set as 0.01,
batch-size is set as 1024 and the discount factor γ is set as
0.95. The transition memory buffer size is 10000 and the
exponent β in priority experience replay is set to 0.6. The
initial positions of the UCAVs are shown in Table I.

B. training

We conduct two experiments, in which the strategy of
adversary UCAV is generated by conventional DDPG algo-
rithm and the strategy of our UCAV is generated by DDPG
and the proposed DDPG with PER algorithm respectively.
In each experiment, we simulate 106 episodes. We use the
mean episode reward to evaluate the performance of the two
algorithms and the results are shown in Fig. 3.
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Fig. 3. The convergence process of the mean episode reward of our UCAV
using DDPG and DDPG with PER

From Fig. 3, it can be seen that the mean episode rewards
of both DDPG and DDPG with PER converge to a certain
result and the DDPG with PER converges to a higher result
than the conventional DDPG. It means that the introduce of
prioritized experience replay can make the network performs
better and lead us to advantage in a 1v1 air combat. Thus,
the proposed algorithm is better than the conventional DDPG
algorithm.
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In addition, we change the value of the size of the replay
buffer S and try to test whether DDPG with prioritized
sampling is robust enough to be insensitive to changes. The
size of the buffer is set as 104, 105 and 106, respectively.
The results are shown in Fig.4.

From Fig.4, it can be seen that the convergence time and
convergence value of the PER based DDPG almost remain
the same as the size of the replay buffer changes. It shows
that the proposed algorithm has a strong robustness to the
change of the parameters.

C. testing and evaluation
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Fig. 5. Comparison between DDPG and DDPG with PER on winning rate
of air combat

To further evaluate the quality of learned air combat
maneuver strategy trained by the DDPG with PER, we use
win rate to measure the performance of DDPG with PER.
The adversary UCAV adopts DDPG and our UCAV adopts
DDPG with PER and DDPG respectively. We conduct the

experiments 100 times and the win rate under each condition
is shown in Fig. 5.

From Fig.5, we can see the win rate of DDPG is among
0.5, while the win rate of DDPG with PER can reach
0.63 and is higher than that of DDPG. Thus, the algorithm
proposed in this paper can perform better in an air combat
than conventional DDPG algorithm.

V. CONCLUSIONS

A reinforcement learning based approach for UCAV ma-
neuver strategy generation is proposed. The DDPG algorithm
is improved by adopting the prioritized experience replay
method. The proposed algorithm is simulated in a 1V1
UCAV air combat environment and the results show that,
with the introduce of prioritized experience replay, the strat-
egy generated improves greatly the autonomous capability of
UCAV.
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